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SUMMARY

This paper discusses a new class of multiple testing procedures, tree-structured gatekeeping procedures,
with clinical trial applications. These procedures arise in clinical trials with hierarchically ordered multiple
objectives, for example, in the context of multiple dose–control tests with logical restrictions or analysis
of multiple endpoints. The proposed approach is based on the principle of closed testing and generalizes
the serial and parallel gatekeeping approaches developed by Westfall and Krishen (J. Statist. Planning
Infer. 2001; 99:25–41) and Dmitrienko et al. (Statist. Med. 2003; 22:2387–2400). The proposed testing
methodology is illustrated using a clinical trial with multiple endpoints (primary, secondary and tertiary)
and multiple objectives (superiority and non-inferiority testing) as well as a dose-finding trial with multiple
endpoints. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Hypothesis testing problems encountered in clinical applications are often based on testing families
of null hypotheses in a sequential manner. For example, drug developers can consider a multistage
testing strategy in the analysis of a clinical trial with multiple objectives. In this trial the first
family of null hypotheses describes the trial’s primary outcomes, the second family includes more
important secondary outcomes and, finally, the third family is formulated in terms of the less
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important secondary outcomes such as efficacy findings at intermediate time points and subgroup
analyses. To account for the ordering of the endpoints, inferences in each family depend on the
acceptance or rejection of null hypotheses in all previously examined families. Since each family
serves as a gatekeeper for the families later in the sequence, this testing approach is commonly
known as the gatekeeping testing approach. Several types of gatekeeping procedures for clinical
trials with ordered objectives have been proposed in the literature.

Westfall and Krishen [1], Maurer et al. [2] and Bauer et al. [3] considered a multistage testing
procedure that has the following form. Consider m families of null hypotheses (gates) correspond-
ing to multiple endpoints, objectives or dose–control comparisons. The hypotheses in the first
family are tested using any multiple test that controls the familywise error rate (FWER) at a
pre-specified � level within that family. The testing is stopped at first failure to reject. Otherwise,
one passes the first gate and the next family is tested using any �-level multiple test. Testing
continues in this manner until either all hypotheses are rejected or at least one of them is accepted
(retained).

An important feature of the multiple testing framework considered in [1–3] is that each family
of null hypotheses is examined only if all of the tests carried out before are significant. Dmitrienko
et al. [4] discussed an alternative scenario in which one sequentially tests families of hypotheses
provided at least one hypothesis in each previously examined family is rejected. There is an inter-
esting analogy between the two described gatekeeping procedures and reliability theory problems.
In reliability theory, the setting discussed in [1–3] corresponds to a system in which basic elements
are connected in series and the strength of the system depends on each individual element. As
a result, this method is termed the serial gatekeeping method. In contrast, the scenario studied
in [4] is conceptually similar to a system with elements connected in parallel and is thus termed
the parallel gatekeeping approach.

A review of multiple testing problems arising in clinical trials reveals that they typically extend
well beyond the simple serial or parallel gatekeeping frameworks [5–7]. As trial designs are
becoming increasingly more complex, clinical researchers commonly encounter situations when
some null hypotheses are tested serially and the others are examined in a parallel fashion with
additional logical restrictions. Examples include dose-finding trials with multiple endpoints in
which secondary tests are restricted to the doses at which the primary endpoint was significant or
clinical trials conducted to study multiple endpoints and pursue multiple objectives (non-inferiority
versus superiority).

The goal of this paper is to develop a general framework for setting up hybrid multistage testing
procedures in clinical trials with hierarchically ordered objectives. The proposed approach is termed
the tree-structured gatekeeping approach (abbreviated as tree gatekeeping approach hereafter) to
emphasize that the decision-making process no longer exhibits a simple sequential structure but
rather relies on a decision tree with multiple branches corresponding to individual objectives. The
proposed testing strategies extend the serial and parallel gatekeeping methods and can be used to
effectively manage multiple tests in a wide variety of applications. The tree gatekeeping tests are
constructed based upon the principle of closed testing [8] and protect the FWER in the strong
sense at a pre-specified � level [9].

This paper is organized as follows. Section 2 introduces the tree gatekeeping framework. Section
3 reviews the principles used in the construction of tree gatekeeping procedures based on the
Bonferroni test in the simple case of two families of hypotheses and Section 4 demonstrates how
one can improve the power of Bonferroni-based procedures via resampling. Sections 5 and 6
apply the proposed tree gatekeeping procedures to two clinical trials with hierarchically ordered
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multiple objectives and compare the tree gatekeeping and regular gatekeeping procedures. Finally,
Section 7 summarizes the conclusions and the Appendix defines the algorithm for constructing
tree gatekeeping procedures for the general case involving an arbitrary number of families.

2. GENERAL FRAMEWORK

To introduce the general framework, consider n null hypotheses grouped intom families F1, . . . , Fm
as shown in Table I. The hypotheses in F1 may be related to a set of primary analyses in a clinical
trial whereas the hypotheses in the other families may represent sequentially ordered secondary
analyses (see Sections 5 and 6 for clinical trial examples). As indicated in Table I, wi1, . . . , wiki
are the weights representing the importance of the ki hypotheses within the i th family (note that
wi1 + · · · + wiki = 1) and pi1, . . . , piki are the associated raw p-values. Finally, let � be the
pre-specified FWER.

In the regular gatekeeping framework, each family serves as a gatekeeper for all subsequent
families. As was explained in the Introduction, the serial gatekeeping procedure must reject all null
hypotheses in a gate (e.g. Family Fi ) in order to proceed to the next gates (Families Fi+1, . . . , Fm).
Likewise, with the parallel gatekeeping approach, at least one test must be significant in a family
to pass the gate.

In the more general case considered in this paper, multiple testing is performed in stages and a
decision to test a particular null hypothesis at the next stage depends on the rejection of selected
(rather than all or at least one) null hypotheses at some or all previous stages. For each individual
hypothesis in Family Fi , i = 2, . . . ,m, say, Hi j , we define two sets of hypotheses denoted by
RS
i j and RP

i j . The selected hypothesis is tested only if all hypotheses in the first set, termed
the serial rejection set, are rejected and at least one hypothesis in the other set, known as the
parallel rejection set, is found false. Note that, for each null hypothesis Hi j , the rejection sets
RS
i j and RP

i j can include null hypotheses from F1, . . . , Fi−1 and at least one of them must be
non-empty.

Once the two sets have been defined for each null hypothesis in F2, . . . , Fm , multiple testing
is carried out in the following manner. First, all hypotheses in F1 are tested independently. When
testing is complete, the second family, F2, is considered. For each hypothesis in F2, say, H2 j ,
one first needs to determine whether or not it is ‘testable.’ The null hypothesis H2 j will be tested
only if all hypotheses in RS

2 j and at least one hypothesis in RP
2 j are rejected. Otherwise, H2 j

is automatically accepted and the next hypothesis in F2 is considered. Hypotheses in the other
families are tested in a similar fashion.

Table I. Notation used in the paper.

Null Hypothesis Raw
Family hypotheses weights p-values

F1 H11, . . . , H1k1 w11, . . . , w1k1 p11, . . . , p1k1
...

...
...

...
Fi Hi1, . . . , Hiki wi1, . . . , wiki pi1, . . . , piki
...

...
...

...
Fm Hm1, . . . , Hmkm wm1, . . . , wmkm pm1, . . . , pmkm
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It is easy to verify that the introduced tree gatekeeping approach simplifies to serial gatekeeping
testing if RS

i j = Fi−1 and RP
i j is empty for every Hi j , i>1. On the other hand, if RS

i j =∅ and

RP
i j = Fi−1, the tree gatekeeping strategy turns into a parallel gatekeeping strategy.

3. BONFERRONI-BASED TREE GATEKEEPING PROCEDURE IN THE
TWO-FAMILY CASE

Tree gatekeeping procedures can be constructed using the powerful principle of closed testing
which guarantees strong FWER control. Before we define the general rules for setting up tree
gatekeeping procedures, we will consider a special case of two families of null hypotheses, the
primary family F1 ={H11, . . . , H1k} and secondary family F2 ={H21, . . . , H2k}. In what fol-
lows we will introduce a tree gatekeeping procedure for testing the 2k null hypotheses based
on the basic Bonferroni test. This procedure will be constructed using the decision matrix
approach [10].

The closed testing family associated with the 2k null hypotheses includes 22k − 1 intersection
hypotheses. For each intersection hypothesis H , let �i j (H) = 1 if H contains Hi j and 0 otherwise.
Also, let �2 j (H) be an indicator that reflects the logical restrictions in F2. Specifically, �2 j (H) = 0
if H contains at least one null hypothesis from RS

2 j or all null hypotheses from RP
2 j . Otherwise,

�2 j (H) = 1.
To define the tree gatekeeping procedure, we will need to construct a 2k-dimensional vector for

the selected H :

v(H) = (v11(H), . . . , v1k(H), v21(H), . . . , v2k(H))

The following algorithm defines v(H) for each individual intersection hypothesis H :

Case 1: If H contains all null hypotheses from F1, for any j = 1, . . . , k,

v1 j (H) = w1 j�1 j (H)

v2 j (H) = 0

Case 2: If H contains at least one null hypothesis (but not all null hypotheses) from F1, for any
j = 1, . . . , k,

v1 j (H) = w1 j�1 j (H)

v2 j (H) = v∗
1w2 j�2 j (H)�2 j (H)

/
k∑

l=1
w2l�2l(H)

where

v∗
1 = 1 −

k∑
l=1

w1l�1l(H)

and 0/0 is set to 0.
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Case 3: If H does not contain any null hypotheses from F1, for any j = 1, . . . , k,

v1 j (H) = 0

v2 j (H) = v∗
1w2 j�2 j (H)�2 j (H)

/
k∑

l=1
w2l�2l(H)�2l(H)

Again, 0/0 is set to 0.

The Bonferroni p-value for testing H is given by

pH = min
i, j

{pi j/vi j (H)}

Once the Bonferroni p-values have been computed for each intersection hypothesis in the closed
family, a multiplicity-adjusted p-value for a null hypothesis Hi j (denoted by p̃i j ) is defined as
the largest Bonferroni p-value among all intersection hypotheses containing Hi j . The hypothesis
Hi j is rejected if p̃i j��. By the principle of closed testing, the constructed multiple test controls
FWER in the strong sense at the � level.

The weights defined in this algorithm were chosen using the following simple rules:

1. If an intersection hypothesis H contains a null hypothesis from the primary family, say,
H1 j , the weight assigned to this hypothesis, v1 j (H), is equal to the weight reflecting its
importance, w1 j .

2. For any H containing null hypotheses from F1 and F2, one first computes the weight
remaining after testing the primary hypotheses, v∗

1 . If the weight is positive, it is distributed
among the testable secondary hypotheses according to their importance. Also, the weights
assigned to the null hypotheses from F2, i.e. v21(H), . . . , v2k(H), are normalized using the
total weight of the testable hypotheses,

k∑
l=1

w2l�2l(H)

This rule is an extension of a similar rule utilized in the Bonferroni parallel gatekeeping
procedure [4].

3. When H contains a null hypothesis from F2, say, H2 j , and at least one hypothesis from
its serial rejection set, RS

2 j , the indicator �2 j (H) is set to 0 and thus H2 j is given a zero

weight. This is done to ensure that H2 j cannot be rejected if some hypotheses in RS
2 j fail to

be rejected. A similar principle is applied when H contains H2 j and all hypotheses from the
associated parallel rejection set, RP

2 j . In this case, �2 j (H) is set to 0 to prevent the rejection

of H2 j when no hypotheses in RP
2 j are found false.

It is important to note that the sum of the weights assigned to an intersection hypothesis H is
no greater than one, i.e.

∑k
j = 1 vi j (H)�1. This sum can be less than one for some intersection

hypotheses, e.g. H = {H1 j }, j = 1, . . . , k. As shown in the Appendix, this property of the tree
gatekeeping procedure ensures that the following independence condition is satisfied: the adjusted
p-values for the null hypotheses in Fi do not depend on the raw p-values for the null hypotheses
in Fi+1, . . . , Fm , which implies that a decision to reject a null hypothesis in Fi is independent
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of decisions made in Fi+1, . . . , Fm . This condition plays an important role in clinical trials with
multiple primary and secondary endpoints because it guarantees that inferences with respect to
primary hypotheses are unaffected by which and how many secondary hypotheses are rejected.
See Dmitrienko et al. [10] (Section 2.7) for a detailed discussion of this condition in a clinical
trial setting.

The described algorithm for the Bonferroni-based tree gatekeeping procedure is easy to extend
to the case of m>2 families. The general algorithm for defining tree gatekeeping procedures is
given in the Appendix. This algorithm is based on the principles described above to ensure that
the procedures meet the serial and parallel gatekeeping criteria, i.e.

p̃i j� max
Hkl∈RS

i j

p̃kl , p̃i j� min
Hkl∈RP

i j

p̃kl

The first condition states that a null hypothesis, Hi j , cannot be rejected unless all of the hypotheses
in its serial rejection set, RS

i j , are rejected. Similarly, the second condition states that Hi j can be

rejected only after at least one of the hypotheses in its parallel rejection set, RP
i j , is found false.

4. RESAMPLING-BASED TREE GATEKEEPING PROCEDURES

The tree gatekeeping procedure introduced in Section 3, as well as its general version described
in the Appendix, rely on the Bonferroni test. Specifically, the Bonferroni test is carried out for
each intersection hypothesis in the closed family and thus the testing procedure depends entirely
on the marginal distributions of the p-values for testing the null hypotheses in F1, . . . , Fm . It is
well known that multiple testing procedures of this kind tend to become conservative in clinical
trials applications when the test statistics are strongly positively correlated which, in turn, leads to
loss of power.

In order to improve the power of the Bonferroni-based procedures, one can account for the un-
derlying correlation structure via resampling [11]. The following is an example of a non-parametric
resampling algorithm described in Westfall and Young [11]. Begin with the original sample and
generate N bootstrap or permutation samples from an estimated complete null distribution (e.g.
from pooled residuals that are obtained by mean centring the observations in each treatment group).
Consider the closed family associated with the null hypotheses in F1, . . . , Fm . For each intersection
hypothesis H , compute the Bonferroni p-value from the original sample (denoted by pH ) as well
as N Bonferroni p-values from the bootstrap or permutation samples (the p-value from the kth
sample is denoted by pH (k)). The resampling p-value for testing H is defined as follows:

p∗
H = 1

N

N∑
k=1

I {pH (k)<pH }

where I { } is an indicator function. After that, as in Section 3, the adjusted p-value for Hi j is
defined as the maximum p∗

H over all intersection hypotheses containing Hi j .
When the joint distribution of the test statistics is normal or nearly normal, one can define a tree

gatekeeping procedure based on parametric resampling. The process of setting up this procedure is
similar to the process of constructing a parallel gatekeeping procedure that incorporates correlation
via parametric resampling [4].

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:2465–2478
DOI: 10.1002/sim



TREE-STRUCTURED GATEKEEPING TESTS 2471

When implementing these or other resampling algorithms, it is critical to ensure that they retain
the correlation structure of the test statistics. For example, in clinical applications involving multiple
endpoints resampling must be performed at the patient level so that each patient’s measurements
are kept together.

Resampling-based procedures control the FWER in the strong sense at a pre-specified � level
under the subset pivotality condition [11]. This condition is met in a wide variety of multiple
testing problems arising in clinical trials, including multiple testing in general ANOVA models.

5. HYPERTENSION TRIAL EXAMPLE

Consider a clinical trial in patients with hypertension which is conducted to compare an experi-
mental drug to an active control with respect to four endpoints:

• Primary endpoint (P): Mean reduction in systolic blood pressure.
• Two secondary endpoints (S1 and S2): Mean reduction in diastolic blood pressure and pro-
portion of patients with controlled systolic/diastolic blood pressure.

• Tertiary endpoint (T): Average blood pressure based on ambulatory blood pressure
monitoring.

The primary comparison in this trial is non-inferiority with a desire to test for superiority for each
endpoint conditional on showing non-inferiority for that endpoint. There are eight null hypotheses
of interest, a non-inferiority and a superiority hypothesis for each of the four endpoints.

Decision rules are shown in Figure 1: if non-inferiority is shown for an endpoint, superiority
will be considered for that endpoint. For example, if non-inferiority is shown for Endpoint P, a
superiority analysis for P as well as non-inferiority analysis for S1 and S2 will be performed. If
non-inferiority is shown for either S1 or S2 (or both S1 and S2), superiority can be tested for that
endpoint and non-inferiority can be tested for Endpoint T. Lastly, if non-inferiority is shown for
Endpoint T, superiority can be tested for that endpoint.

It is clear from Figure 1 that the decision tree in this clinical trial example does not have a
simple stepwise structure required by gatekeeping tests. While most of the analyses have a single

Figure 1. Decision rule in the hypertension clinical trial. The diagram includes references to the primary
(P), two secondary (S1 and S2) and tertiary (T) endpoints as well as non-inferiority (Non-inf) and

superiority (Super) analyses.
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Table II. Bonferroni-based tree gatekeeping procedure in the hypertension clinical trial.

Null Parallel Hypothesis Raw Adjusted
Family hypothesis rejection set weight p-value p-value

F1 H11 NA 1 0.001 0.001∗

F2 H21 {H11} 1/3 0.008 0.024∗
H22 {H11} 1/3 0.026 0.078
H23 {H11} 1/3 0.003 0.009∗

F3 H31 {H21} 1/3 0.208 0.624
H32 {H22} 1/3 0.302 0.906
H33 {H21, H22} 1/3 0.010 0.045∗

F4 H41 {H31} 1 0.578 0.906

The serial rejection sets for the null hypotheses in F2–F4 are empty. The asterisk identifies
the adjusted p-values that are significant at the 0.05 level.

predecessor, the non-inferiority test for Endpoint T has two predecessors and depends on them in
a ‘parallel manner.’

To set up a tree gatekeeping procedure, one first needs to group the described eight null
hypotheses into families. Family F1 consists of all null hypotheses that do not depend on other
null hypotheses. Family F2 consists of all null hypotheses that depend on null hypotheses in F1,
etc. Using this algorithm, the null hypotheses displayed in Figure 1 can be grouped into four
families:

Family F1. Non-inferiority analysis for Endpoint P (H11).
Family F2. Non-inferiority analysis for Endpoints S1 and S2 (H21 and H22) and superiority

analysis for Endpoint P (H23).
Family F3. Superiority analysis for Endpoints S1 and S2 (H31 and H32) and non-inferiority

analysis for Endpoint T (H33).
Family F4. Superiority analysis for Endpoint T (H41).

Secondly, based on the decision rule depicted in Figure 1, it is easy to set up rejection sets
for the null hypotheses in Families F2, F3 and F4 (Table II). Note that a serial rejection set
is equivalent to a parallel rejection set when it includes a single null hypothesis. For the sake
of simplicity, Table II focuses on the parallel rejection sets and the serial rejection sets are de-
fined as empty sets. As mentioned above, most null hypotheses in this clinical trial depend on
a single null hypothesis from the previous family, for example, RP

21 = {H11} and RP
32 = {H22}.

The only exception is the non-inferiority analysis of the tertiary endpoint (H33) for which
RP
33 = {H21, H22}.
In order to compute multiplicity-adjusted p-values for the eight null hypotheses in this example,

one first needs to obtain the Bonferroni p-values for the 28 − 1= 255 intersection hypotheses as
shown in the Appendix. As an illustration, we will consider the computation of the Bonferroni
p-value for H = H23 ∩ H41. Note that w23 = 1

3 and w41 = 1. Therefore, v23(H) = 1
3 and the remain-

ing weight, 2
3 , will be carried over to the last family. Since H includes only one null hypothesis

in the last family, i.e. H41, all of the remaining weight will be spent on this null hypothesis. In
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other words, v41(H) = 2
3 and thus

pH = min(3p23, 3p41/2)= min(0.009, 0.867)= 0.009

After the Bonferroni p-values have been calculated for the 255 intersection hypotheses in the closed
family, an adjusted p-value for a null hypothesis, say, Hi j , is found as the maximum Bonferroni
p-value among the intersection hypotheses containing Hi j .
Table II displays the raw p-values for the eight null hypotheses as well as adjusted p-values

produced by the Bonferroni-based tree gatekeeping procedure. The procedure rejects the null
hypothesis of lack of non-inferiority for Endpoint P (H11) and proceeds to test the null hypotheses
in the second family. The superiority test for Endpoint P (H23) is significant and so is the non-
inferiority test for Endpoint S1 (H21). Since H21 is in the parallel rejection set for H31 and H33,
these two null hypotheses are tested next. The testing procedure fails to reject the former but
rejects the latter. Note also that, since H22 is accepted, one can ‘cut off’ the associated branch
which includes the superiority test for Endpoint S2 (H32). By doing this, one increases the power
of other significance tests in Families F3 and F4. Reviewing the results, we conclude that the
experimental drug is superior to the active control with respect to Endpoint P and non-inferior for
Endpoints S1 and T.

6. DOSE-FINDING DIABETES TRIAL EXAMPLE

The second example deals with a clinical trial in patients with Type II diabetes. The trial compares
three doses of an experimental drug (Doses L, M and H) versus placebo (Plac). The efficacy profile
of the drug will be studied using three outcome variables:

• Primary endpoint (P): Haemoglobin A1c.
• Secondary endpoint (S1): Fasting serum glucose.
• Secondary endpoint (S2): HDL cholesterol.

The endpoints will be examined at each of the three doses. To build a testing procedure, we
need to define nine null hypotheses and group them into three families. Family F1 consists of the
H-Plac (H11), M-Plac (H12) and L-Plac (H13) comparisons for Endpoint P. Families F2 and F3
include the dose–placebo comparisons for Endpoints S1 and S2, respectively.

The three families will be tested sequentially with the following caveat. The tests for Endpoint
S1 (Family F2) will be restricted to the doses at which Endpoint P demonstrated a significant
effect. Likewise, a dose–placebo test for Endpoint S2 (Family F3) will be carried out only if
the corresponding tests for Endpoints P and S1 produced significant results. This logical restric-
tion arises in a large number of registration trials and helps the trial sponsors streamline drug
labelling.

As in the hypertension trial example, it is easy to ‘quantify’ the described decision rule by
defining rejection sets for the null hypotheses in F2 and F3. Table III displays the serial rejection
sets for the six null hypotheses (the corresponding parallel rejection sets are empty). Using these
rejection sets, we can now carry out the Bonferroni- and resampling-based tree gatekeeping tests
and compare their performance in this clinical trial.

Beginning with the tree gatekeeping procedure derived from the Bonferroni test, we can see
from Table III that four adjusted p-values are significant at the 0.05 level. First, the two higher
doses demonstrate a significant effect on Endpoint P compared to placebo (H11 and H12). No
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Table III. Bonferroni- and resampling-based tree gatekeeping procedures in the Type II
diabetes clinical trial.

Adjusted p-value

Null Serial Hypothesis Raw Bonferroni Resampling
Family hypothesis set rejection weight p-value procedure procedure

F1 H11 NA 1/3 0.005 0.015∗ 0.015∗
H12 NA 1/3 0.011 0.033∗ 0.033∗
H13 NA 1/3 0.018 0.054 0.035∗

F2 H21 {H11} 1/3 0.009 0.027∗ 0.026∗
H22 {H12} 1/3 0.026 0.078 0.076
H23 {H13} 1/3 0.013 0.054 0.035∗

F3 H31 {H11, H21} 1/3 0.010 0.030∗ 0.029∗
H32 {H12, H22} 1/3 0.006 0.078 0.076
H33 {H13, H23} 1/3 0.051 0.076 0.076

The parallel rejection sets for the null hypotheses in F2 and F3 are empty. The asterisk identifies the adjusted
p-values that are significant at the 0.05 level.

significant effect is detected at the lowest dose. Therefore, we can focus on the H-Plac and M-Plac
comparisons in the second family. Next, the H-Plac contrast is significant for Endpoint S1 (H21)
which means that only the highest dose will be compared to placebo in the third family. The
H-Plac contrast also turns out to be significant for Endpoint S2 (H31) and thus we conclude that
the experimental drug separates from placebo for all three endpoints at Dose H and exhibits a
significant effect for Endpoint P at Dose M.

Table III also shows the adjusted p-values generated by the tree gatekeeping procedure that
accounts for the correlation among the dose–placebo contrasts and endpoints. This procedure is
based on the non-parametric resampling algorithm described in Section 4. The resampling-based
adjusted p-values were computed from N = 50 000 bootstrap samples and are virtually uniformly
smaller than the Bonferroni-adjusted p-values. As a result, the resampling-based procedure rejects
more null hypotheses. For example, since the resampling-based procedure detects a significant
difference between L and Plac for Endpoint P (H13), we can follow the branch and test the L-Plac
contrast for Endpoint S1 (H23). This test also produces a significant outcome.

It is instructive to compare the described tree gatekeeping strategy with a parallel gatekeeping
approach that treats F1 and F2 as parallel gatekeepers and thus ignores the logical restrictions.
Table IV shows that the parallel gatekeeping procedure can be written as a tree gatekeeping
procedure by appropriately defining parallel rejection sets for the null hypotheses in F2 and F3.
This table also displays adjusted p-values produced by the Bonferroni-based parallel gatekeeping
procedure. It is easy to verify that this testing procedure finds only three significant dose–placebo
contrasts, the H-Plac contrast for Endpoints P and S1 (H11 and H21) and M-Plac contrast for
Endpoint P (H12). The H-Plac comparison for Endpoint S2 (H31) turns out to be non-significant
because the parallel gatekeeping test does not take the logical restrictions into account and thus
does not ‘cut off’ branches when it encounters a non-significant result. This leads to power loss
for the tests that are placed later in the sequence (in this case, dose–placebo comparisons for
Endpoint S2).
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Table IV. Parallel gatekeeping procedure in the Type II diabetes clinical trial.

Null Raw Parallel Adjusted
Family hypothesis p-value rejection set p-value

F1 H11 0.005 NA 0.015∗
H12 0.011 NA 0.033∗
H13 0.018 NA 0.054

F2 H21 0.009 {H11, H12, H13} 0.041∗
H22 0.026 {H11, H12, H13} 0.078
H23 0.013 {H11, H12, H13} 0.054

F3 H31 0.010 {H21, H22, H23} 0.054
H32 0.006 {H21, H22, H23} 0.054
H33 0.051 {H21, H22, H23} 0.076

The serial rejection sets for the null hypotheses in F2 and F3 are empty. The adjusted
p-values are computed using the regular Bonferroni approach. The asterisk identifies the
adjusted p-values that are significant at the 0.05 level.

Table V. Tree gatekeeping procedure with equally important secondary endpoints in the
Type II diabetes clinical trial.

Null Raw Serial Adjusted
Family hypothesis p-value rejection set p-value

F1 H11 0.005 NA 0.015∗
H12 0.011 NA 0.033∗
H13 0.018 NA 0.054

F2 H21 0.009 {H11} 0.045∗
H22 0.026 {H12} 0.052
H23 0.013 {H13} 0.054

F3 H31 0.010 {H11} 0.045∗
H32 0.006 {H12} 0.036∗
H33 0.051 {H13} 0.054

The parallel rejection sets for the null hypotheses in F2 and F3 are empty. The adjusted
p-values are computed using the regular Bonferroni approach. The asterisk identifies the
adjusted p-values that are significant at the 0.05 level.

To gain another insight into the nature of tree gatekeeping procedures and appreciate the
flexibility of the proposed testing framework, one can compare the scenario reviewed above
(Endpoints S1 and S2 are ordered) to the case of equally important secondary endpoints. To
construct a tree gatekeeping procedure for this case, all we need to do is to re-define the serial
rejection sets for the null hypotheses in F3 and then re-run the algorithm to compute a new set of
adjusted p-values. The modified rejection sets and resulting adjusted p-values are shown in Table V.
Since the dose–placebo tests in F3 no longer depend on the outcome of the corresponding tests
in F2, it might be possible to find more significant results for Endpoint S2. Table V demonstrates
that this is actually the case. Comparing the Bonferroni-adjusted p-values displayed in Table V to

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:2465–2478
DOI: 10.1002/sim



2476 A. DMITRIENKO ET AL.

those shown in Table III, we discover that the four dose–placebo comparisons that were significant
in the ordered case retain significance and, in addition, the M-Plac contrast for Endpoint S2 (H32)
turns out to be significant.

7. CONCLUSIONS

This paper introduces a general family of flexible testing procedures (tree gatekeeping procedures)
for multiple testing problems encountered in clinical trials with hierarchically ordered objectives.
The described framework helps unify and extend a variety of multiple testing procedures proposed in
the literature, including serial gatekeeping tests [1–3], parallel gatekeeping tests [4] and gatekeeping
tests with logical restrictions [5].

The paper defines tree gatekeeping procedures derived from the basic Bonferroni test and also
shows how these procedures can be extended to account for the correlation among the individual
test statistics. Clinical trial examples illustrate the power and flexibility of the proposed testing
approach and demonstrate that it can be used to effectively manage multiplicity issues arising in
a wide variety of applications.

APPENDIX

Weight assignment algorithm. Consider the general case of testing null hypotheses in m families.
The ideas presented in Section 3 can be extended to define Bonferroni-based tree gatekeeping
procedures using the principle of closed testing and decision matrix approach.

Consider the closed family associated with the n null hypotheses in Families F1, . . . , Fm . For
each intersection hypothesis H , define the indicator functions �i j (H) and �i j (H) as in Section 3.
To define the general tree gatekeeping procedure, we need to construct an n-dimensional weight
vector for H . In order to facilitate this process, the following algorithm sequentially defines m
subvectors, one for each family of null hypotheses (it is assumed in the algorithm that 0/0= 0):

Step 1: Family F1. Let v1 j (H) =w1 j�1 j (H), j = 1, . . . , k1, and let v∗
1 be the remaining weight

that can be used in Families F2, . . . , Fm , i.e. v∗
1 = 1 − ∑k1

j = 1 v1 j (H).
...

Step l: Family Fl . Let

vl j (H) = v∗
1wl j�l j (H)�l j (H)

/
kl∑
s=1

wls�ls(H)

where j = 1, . . . , kl . The remaining weight at this step is given by v∗
l = v∗

l−1 − ∑kl
j = 1 vl j (H).

...

Step m: Family Fm . Let

vmj (H) = v∗
m−1wmj�mj (H)�mj (H)

/
km∑
l=1

wml�ml(H)�ml(H)

where j = 1, . . . , km .
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As in Section 3, the Bonferroni p-value for the selected intersection hypothesis H is given by

pH = min
i, j

{pi j/vi j (H)}

and the adjusted p-value for a null hypothesis, say, Hi j , is found by computing the maximum pH
over all intersection hypotheses containing Hi j .

As shown in Dmitrienko et al. [10] (Section 2.7), this algorithm is easy to implement by
constructing a 2n−1 × n matrix in which each row corresponds to an intersection hypothesis in
the closed family and each column corresponds to a null hypothesis. The matrix is populated by
the weights, vi j (H), and the Bonferroni p-values are computed for each row. After that, adjusted
p-values for the original null hypotheses are obtained by finding the maximum in each column.
This approach is implemented in the SAS macro (%TreeGatekeeper) that can be downloaded from
the BioPharmNet web site (www.biopharmnet.com/code).

Independence condition. In order to understand why the proposed tree gatekeeping procedure
satisfies the independence condition given in Section 3, note that, for any intersection hypothesis
H , the weights, vi j (H), are defined sequentially and determined solely by the higher ranked
hypotheses contained in H . The presence or absence of lower ranked hypotheses in H does not
affect the weights assigned to the higher ranked ones and thus, intuitively, the adjusted p-value
for Hi j will not depend on the p-values for the null hypotheses in Fi+1, . . . , Fm .

To provide a more formal proof, consider a null hypothesis Hi j , where i = 1, . . . ,m − 1 (note
that the independence condition is relevant only for null hypotheses in F1, . . . , Fm−1). Let Hi j be
the set of all intersection hypotheses containing Hi j and let H−

i j denote the set of all intersection
hypotheses that contain null hypotheses in F1, . . . , Fi−1 and Hi j .

First, let H∗ be a non-empty intersection formed by any hypotheses, other than Hi j , from
Fi , . . . , Fm . For any H ∈H−

i j ,

pH∩H∗�pH

since, by adding H∗ to H , no previously assigned weights in H are changed. Next, the adjusted
p-value p̃i j is the largest pH over all intersection hypotheses in Hi j . By the obtained inequality,
the maximum is achieved at an intersection hypothesis H ∈H−

i j , i.e.

p̃i j = max
H∈H−

i j

pH

It immediately follows from this representation of the adjusted p-value that p̃i j is independent of
the p-values for the null hypotheses in Fi+1, . . . , Fm and the independence condition holds.
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